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Abstract—The problem of evaluating the effective longitudinal shear modulus of a unidirectional
fiber composite containing fiber-matrix interfacial cracks is considered. The generalized self-con-
sistent scheme is employed in the formulation of the problem. The resulting mixed boundary value
problem leads to a system of dual series equations. which can then be reduced to Fredholm integral
equations of the first kind with a logarithmically singular kernel. The reduced longitudinal shear
modulus is calculated by solving the governing weakly singular integral equations.

INTRODUCTION

The presence of many cracks in a composite material may cause reduction in its stiffness,
thus degrading the integrity of the material.

The problem of analysing stiffness reduction due to the presence of cracks, like other
crack problems for composite materials, may be attacked by two fundamentally different
approaches. One 1s the macromechanics approach that approximates heterogencous com-
posite materials as homogeneous but anisotropic media. The other s the micromechanics
approach which incvitably leads to the treatment of cracks in dissimilar materials. A large
number of solutions cxist in the technical literature for dissimilar materials containing
cracks of various locations and orientations. As it is well recognized that cracks are more
likely to develop at interfaces between two different constituent materials of a composite
medium, a considerable amount of work has been devoted to the analysis of interfacial
cracks [sce Comninou (1990) for review and further references]. However, most of the
investigations were concerned with cracks near or at an interfuce of two semi-infinite media
rendering no direct applications to the problem of stiffness reduction caused by interface
cracks present in composite materials,

Although a number of studies has been made on the evaluation of effective elastic
moduli of crucked homogeneous materials [for instance, Delameter er af. (1975), Hocenig
(1979)]. the work on cracked fiber composites in the light of micromechanics analysis is
still relatively rare in the literature. Highly approximate trecatments of the reduction in
fongitudinal Young's modulus of an aligned short-fiber reinforced composite weakened by
fiber-end cracks and a unidirectional fiber composite with broken fibers were given by
Takuao ef al. (1982) and Steif (1984), respectively, in which the singular nature of the stress
ficld in the vicinity of a crack has not been taken into account. The problem of calculating
clastic moduli of unidirectional fiber composites containing matrix cracks was considered
by Laws ¢r al. (1983).

To permit a comparatively simple analytical formulation, in the present paper we
consider the problem of evaluating the reduced longitudinal shear modulus of a unidi-
rectional fiber composite containing interfacial cracks. The generalized self-consistent
scheme is employed to evaluate the effective shear modulus of the composite weakened by
those cracks. This method has been applied by Christensen and Lo (1979) to calculate
elastic moduli of fiber-reinforced composites with perfect interface, and later extended to
imperfect interface conditions (Hashin, 1990). The self-consistent analysis has also been
applied rather frequently to calculate elastic moduli of cracked homogeneous materials. In
the two-dimensional crack configuration of the present problem. cracks are assumed to
take place along the entire length of the fiber, which may not happen in general. The
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resulting mixed boundary value problem leads to a system of dual series equations, which
can then be reduced to Fredholm integral equations of the first kind with a logarithmically
singular kernel. Although great difficulty is generally to be expected in numerically solving
Fredholm integral equations of the first kind with a smooth kernel. the presence of the
logarithmic singulanty in the current problem makes the integral equations amenable to
numerical solution. The reduced longitudinal shear modulus is then calculated by solving
the governing weakly singular integral equations.

Problems related to fiber-reinforced composites under longitudinal shearing have been
studied by many authors (Adams and Doner, 1967 Budiansky and Carrier, 1984 Steif
and Dollar. 1988). The dual series approach adopted in this paper has been used in solving
various mixed boundary value problems such as the separation of an inclusion from an
infinite matrix (Keer ez «f., 1973) and the bending of cracked beams (Westmann and Yang,
1967) and plates (Keer and Sve, 1970).

FORMULATION OF THE PROBLEM

Consider a unidirectional fiber-reinforced composite as shown in Fig. | with some of
the fibers containing interfacial cracks. Both the fibers and the matrix are taken to be
homogencous, sotropic and lincarly elastic, with shear modulus of Gy and G, respectively.
It is assumed that the interface cracks are randomly located so that the composite matenal
remains transversely isotropic. It s further assumed that fibers contain only single cracks,
but the crack size may vary from fiber to fiber. As illustrated in Fig. 2. the location of the
crack at the hber-matrix interface is defined by the angle ff, and the extent of the crack s
measured by the angle x with the half crack length ¢ = xa, where a is the fiber radius.

To determine the effective longitudinal shear modulus G, a longitudinal shear stress
Ty = 1, is applied to the composite material as illustrated in Fig. 1. The problelm is
that of the anti-plane strain deformation, and the only nonvanishing displacement is the
longitudinal component w, It follows that

33

G, = (1)

21?:}

where 7.y and &, are respectively the average stress and strain in the composite. Using the
average stress theorem, it can be shown that 7,5 = 1. Applying the average strain theorem,
&y can be expressed in terms of the fiber and matrix strain averages &5, and £%,, respectively,
and the displacement jump [iw] across the interface cracks as

2y, = 2V +2(1 = V)i + Ty )
<F
O O O
O O O
1O 0.0

X,

Fig. 1. Longitudinal shearing of a unidirectional fiber composite.
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X
Fig. 2. Crack contiguration.
with
|
Coo= | [w)n, ds (3)
oA s,

where Vs the fiber volume fraction, A is the composite specimen cross-section area, S,
denotes the contour of all the cracked interfaces, ny denotes the v,-component of the
outwird normal of the contour and ds is the element of arc length of the contour. Using
the stress -strain relations for the fiber and the matrix materials and eliminating the matrix
average stress one finds that

. 1 FL, Tay
28 = by G, - G. T+ G. +T s (4)

and it follows from (1) that
Glll Gl“ -!; G"\ =

Equation (5) constitutes the basic equation for calculating the effective longitudinal
sheitr modulus of the fiber composite containing interfacial cracks under consideration.
Evaluation of the average fiber stress and the interface displacement integral in (5) is
done by utilizing the generalized self-consistent scheme. The underlying assumption of the
generalized self-consistent scheme in the present context is that the average state of stress
and strain in any individual fiber is estimated by embedding a composite cylinder, consisting
of a fiber with radius @ and a concentric matrix shell with radius b such that the fiber volume
content in the composite cylinder is the same as the gross composite material, in an infinite
homogeneous and transversely isotropic material having the effective longitudinal shear
modulus G, yct to be determined, and a longitudinal shear stress t, is applied at infinity.

We introduce local crack coordinates (v, x,, .x3) as opposed to the global coordinates
(£,.%..%,) with x; = ¥, along with the corresponding polar coordinates (r. 0). It is defined
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Fig. 3. Generalized self-consistent scheme model.

with respect to a single crack as illustrated in Fig. 3 with the x-axis passing through the
center of the crack arc. It is convenient to consider the problem in the local polar coordinate
system. Hence a three-phase boundary value problem needs to be solved to obtain the average
fiber stress and the interface displacement integral in (5). Since the average is taken over
all the fibers and the integral over all the cracked interfaces, this boundary value problem
has to be solved many times according to cracks with different sizes. Since the yet unknown
effective modulus G, enters the solution itsclf of the three-phase self-consistent model, an
iterative procedure is apparently required to solve (5) for G..
The displacement function w(r, #) is harmonic, satisfying Laplace’s equation

V=90 (6)
with corresponding shear stress components given by

GOW 1 Ow
T,. = T Ty: = .
" or rco

N
where G denotes the shear modulus. The above expressions are valid for the fiber, the
matrix and the effective materia! provided that G is replaced by Gy, G,, and G, respectively.
The following boundary condition at infinity is obtained with reference to the local polar
coordinates

7. =1,¢0s fisinO+zt,sin fcos0, r— . 8)

The solution to Laplace’s equation (6) is expressed as w(r,0) = w'"(r,0) +w'3(r, 0),
where w!”(r.0),s = 1,2, are odd and even functions of 0, respectively. The corresponding
stress components can be written as t,.r.0) = 1 (r, D) +3(r, 0),
10:(r. 0) = 42 (r, 0) +142(r, 0). Denoting the solutions in the three regions of 0 <r < a,
a <r < bandr > b by superscripts f, m and e respectively, we have

wi= % A" sin nf ©))

n=1

k4

C(ID
wiim = §° (BL":"+~;, )sin no (10)

n= |
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x D" 7o cOs B

wile = "; ;, sin nf + C rsin 6 (11)
and
W = S AP cos nd (12)
n=f
x C(:h
wim = ’Z’I (Bi,”l"-}- —’_""-> cos nf 13
s ’°—"Z;I D—’;cos 10 + G‘cnﬂrcos(). (14)

Due to the symmetries, only the region of 0 € 8 < = need be considered.
By using (7), the radial shear stress components can be expressed as

=Gy Z nAM Y sin b (15)
n= |
C(I)
=G, Z n(Bf,”l" ! r"fll)sin nb (16)
"=
D(I)
e =G, Z i sin n0 + t, cos ffsin 0 an
n=1
and
=G Y nal?r " cos nf) (18)
n=1
C(:)
9" =G, Z (Bi,z’:""-— ',,:,)cos nf (19)
ne |
D(Z)
2 = G, Z —=—cos nf + 74 sin f cos 6. 20

ne |

Similar expressions may be written for the corresponding tangential shear stress
components.
The solutions are required to satisfy the boundary conditions at r = a

94, 0) = t"™(a,0), a<0<n (21
a4, 0) = t'?™(a,0) =0, 0<0<2 (22)
wq,0) = w™(@.0)., x<0<n (23)

and the boundary conditions at r = b

(b, 0) = ti(h,0), 0<O<n (24)
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“.(\)m(b’ 0) o “.(HC(h' 9). 0 g 0 s bed (25)
s=1.2.
The boundary conditions are mixed. and they lead to the following dual series equations

4

Yoad A sinnd) =0, 0<H< (26)
n=
Y (+B)a" 4 sinnd = Fi(8)., 2<0<n 27
n=1i
and
Z nd' A cosntl =0, 0<H<a (28)
n=|
AP+ Y U+B)a" 4 cosnl = Fo(f)), 2<0<n (29
n= 1
where
iz 30
" G 0
G G, 31
=G, o

1+G+(1-G)YV7

P "’1+(7*(i—6')1/;f (32)
. 4 tgcos fi .
Fh =~ oo ey - 20 : 3
() YG-aZ6yv. G. asinl (33)
4 i
Fi(0) = sinf coso. (34)

I+G-(1-G)V, G,

SOLUTIONS OF THE DUAL SERIES EQUATIONS

We now proceed to construct the solutions for the dual series equations (26)-{27) und
(28)-(29). For this purpose, let # () and H,(0) denote the anti-symmetric and symmetric
parts of the shear traction along the uncracked portion of the interface. It follows that

g g o {0 xSOS
Gr"-zl nag” AL sin nf) = 0. 0<i<s s
3 VI H, (), 2a<s0sgn
Gy ng‘ nd" A cos nl) = 0. 0<t<n 36)

The Fourier coefficients 4. and A" are given by
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R
AV = , J H (¢)sin ng do 37
nG, 2
(M) 2 i
A,, = WTJ; H:(¢)CO§ ”(b d¢ (38)
n=1.273....
and
j Hy(¢)d = 0. (39)

Substituting (37) and (38) into (27) and (29). respectively. and changing the order of
integration and summation, we arrive at the following Fredholm integral equations of the
first kind

J H($)K (0. ) dd = [,(0) (40)

G
..ur., sin /f

Al ”+J' AAP)K(0. $)d = £1(0) (41)

where K () = il (P)tycos . Ho(Pp) = nifl,(p)T, sin ff and

[ f,(p)dep =0 (42)
Ki(0.¢) = }: (l+/i,,) smn() sin s (43)
w1
Ky {0, $) = Z (1 +/i,,)  cos nf) cos ne (44)
n=1
S0y = I—IET—G)M sin 0 (45)
- ‘) )
f:(0)=i“+j'G U=6v -cos (46)

The kernels of the integral equations (40) and (41) contain a logarithmic singularity.
To see this, let (43) and (44) be rewritten as

Lll
Ki(0.¢)=(1+4) Z smn()sm np+2i(1-G) }: K:(;:I—(:)V" lsm n0 sin ng

nwl nw |

47

e

!
G- =C)in - cos nf) cos ne.

Ki0.¢) = (144) Z cosn(Jcosnd)+"x(l—G) Z

n= | ne= |

(48)
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Since 17, < 1. the second series in (47) and (48) are bounded while the first ones can be
summed exactly to yield

Y —sinnfsinng = log
n

n=1

(49)

. O+ .
sin —— | — :log

o
Y cosutdcos ngp = — log
WM

o —
2sin —:’jl (50)

. 04+
2sin ,_’_‘é ‘ — log

Hence (49) and (30) show that the kernel functions become logarithmically singular at
0 = ¢. Note that the functions £(0) (s = 1.2) on the right-hand-sides of (40) and (41) are
well-behaved. and consequently the solutions to the integral equations (40) and (41). which
possess logarithmically singular kernels, have a square-root singularity at ¢ = x (Tuck.
1980).

Using (49) and (30). we write (30) and (41) as follows:

J‘ﬁwmkma¢m¢=ywm (51

~

A +J A (PR (0. P)dp = g.(1) (52)

where A7 = (1 +2)alt, Go)sin 157, and

- {) hy ) —
K (0. ) = log | sin :(/ ; ~log | stn e
i1 =Gy ¢ Ve I . c
L4 "{\:I ($G=(1=C)V n sin nf) sin np (33)
_ 0 -
K:(0,¢) = —log ?.sin-wi;—(él —log|2sin ——
4(1-G) = 4 1
- 4
T "; TV cos nfl cos np  (54)
() = 4 inf (55)
N (o [ o VA R
4
g-(0) = cos 0. (56)

I+ +G=(1=C)V]

The cocthicient 147 is determined by the auxiliary cquation (42).
Hencee the solution of the dual series equations (26)~-(27) and (28)-(29) is reduced to
the solution of the Fredholm integral equations (51) and (52).

CALCULATION OF THE EFFECTIVE MODULUS

By applying the average stress theorem, the average fiber stress in (5) can be written
as
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1
f.gj = —"‘J‘ T}.f: ds (57)
So+S.

f

where A; is the total cross area of all fibers, S, is the contour of all the interfaces without
cracks and T, is the shear traction at the interfaces.

Let us assume that for simplicity all fibers have equal radius a. It follows that
Ay = Nyma®, where N is the number of fibers. Following the procedure of the generalized
self-consistent scheme, the integral over the uncracked interfaces can be eastly calculated.
The result is

4;
G+DI+G)+ =D =C)V,. ™

'l—J‘ T}.\-‘_‘_ dS = (l —nc) (58)
So

where n, = N /N, is the interface crack number fraction. N, being the number of fibers that

contain interface cracks. In terms of the local polar coordinates we have from (57) and (58)
thy=(l=n) e ——v—---i}l—»—»—-ﬂ——Ar + e 1 Y jn T,(0; a. B)sin(0+ ) do
DEUTGENFO TGS Ao T e N5 ) T

(59)

where the summation is taken over all possibic values of x and f3.
Since T,(0) = H /() + H,(Nforag 0K n, ~n 0K —awhere H (=0) = — H, (0).
H(=0) = H, (), and T;(0) = 0 for —a < 0 < 2, it follows that

f-':\ - I . »4{/.. _ .
n U G RGO F SN =G

1 N : - -
+2in, v y {cos‘ /)’J‘ (1) sin 0 d0+sin” /iJ. Hy(0)cos 0 d()}. (60)
{ b

[ ¥ x

Notice that as before we do not write the explicit dependence of H,(0) or H,(0) (s = 1,2)
on z. For convenience we will continue to do so when there is no danger of confusion.

As discussed earlier, we postulate that the interface cracks are randomly located so
that the angle # varies from 0 to 2x. In addition, we introduce a distribution function f(x)
such that the fraction of cracks whose half crack lengths have values between ¢ and c+dc¢
where ¢ = aa is given by f(2)dx. Thus, the summation in (60) can be replaced by an
integration as follows:

4 4 +
o - TN O T -0

{[;ﬂﬁ'x cos’/id/f:”‘ ﬁ.(O)sin0d0+[-2-l-7-rﬁ' sin’ﬂdﬁH i—lz(o)cos()d()} (61)

where 2,a € ¢ < a,a gives the range of the interface crack length,
Hence we have

2n . J‘=: f(2)dx

x

Thy | 4; B
o U AT F GO =G,

+nci.Jx:f(1)dx{jxﬁ.(0) sin ()d()+[ﬂ A.40) cosOd()}. (62)



1590 Hong TexG

In the local polar coordinates, by using the fact that ¥; = Nna?/ 4 the integral of dis-
placement jump at the cracked interfaces I'», in (3) can be written in the form

bd

Fin, 1 g
I, = . X/:;, _’[u]sm(9+ﬂ)d() (63)

where [w] = w™ (¢, 8) —w'(a. 9). It can be shown that the following expression is true:

4 T
- L asin(0+p)

(10 [
1+G-(1-G)}; G,

T

—A7 =Y (L4 B)A sin nf+ A7 cos nt).  (64)

n=1

Inserting (64) into (63). using (37) and (38), and after some manipulation we obtain
the following result :

4
1+G—(1=-G),

Gy Ving | v min
B s ~2(1 4 Z)sin” ffsin 24" +
T N T N ’Z“ { ( }s f )

1

x [x+ Lsin 2x(sin® ff—cos® §)] — 4 cos?® /fj J (PR (0, ) sin 0 d0 dep

[t}

-4 sin:[ff f FL0)K (0. ) cos 0 do d(/)}. (65)
0 2

As discussed before the summation in (65) can be replaced by an integration through the
aforementioned distribution function f{x). After carrying out the integration with respect
to fi, we obtain

146G (1-G)v, ™

Gl“
Ty

Vi, | %+ . 702
r:‘zﬂi J /(x)dg({—-(l+/.)S|n1.4((,")+

1

—2J J l_ll((b)lx’,((),(b)sin()d()dfb—?_-[’ J H,($)K(0, ) cos ()d()dd)}. (66)

0

Thus the effective longitudinal shear modulus is calculated via the solution of the equation

1 3 G
G '= I+Vr<. - l>r" + "I (67)
I To Ty

NUMERICAL SOLUTIONS AND RESULTS

It is well known that in general a Fredhom integral cquation of the first kind can be
very difficult to solve numerically. Indeed this fact might partly account for the past
preference for reducing dual series equations to an integral equation of the second kind
(Westman and Yang, 1967 ; Keer and Sve, 1970 Keer et al., 1973). An effective technique
for numerically solving singular integral equations of the first kind with a dominant Cauchy
type singularity, which are frequently encountered in fracture mechanics analysis, has been
proposed by Erdogan and Gupta (1972), but no general numerical treatment of the type
of the integral equation under present consideration appears to exist in the literature.
Nonetheless. the logarithmic singularity present in the current problem makes the integral
equations (51) and (52) suitable for a numerical solution that will be described here.
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First note that the solutions contain the square-root singularity at the end point ¢ = z.
To incorporate such singularity in the solutions. we introduce bounded functions A,(¢).
s = 1.2, such that

H(¢) = . 1SS (68)

To solve the integral equations (51) and (52) in combination with (42) we divide the interval
[x. 7] into NV subintervals [¢,_,.¢,]. j = 1.2,.... N and by substituting (68) into (51), (52)
and auxiliary equation (42). we have

v », l
5 j‘ £0.0"9) 44— 9.0) (69)
=1 Jo, \/(ﬁ—a
oy | Aw¢)—gid¢—:w> (70)
j=1 J9, \/(/)_1
L hy()
- dep = 0. n
,;l j>, ] /(t) o4

Then we approximate A.($) by a step function. i.c. replace it within the jth subinterval
[¢,.1.¢,] by a constant &) (s = 1, 2), which gives

v *
Y /.;“J K. dd ~ ¢,(0) (72)
1= w, \/(b x
A% », "‘
ﬂ?+zhﬁj R0 4 % g200) (13)
r-1 o \/(/)—1
AY -b, l
R —d¢p 0. (74)

pet b, -\/(/) —a

If we now evaluate the integrals in (72) and (73) at the mid-point of each subinterval and
carry out the integration in (74) we arrive at the following systems of linear equations

Z I\”’/t"’ =g" (75)
IEN!
-~ VV -
AP+ Z KPh? = gt (76)
el
A"
Y Kh? =0 (77)
=1
i=1,2,..., N
where
_ ¢ K(0 ®)
K} = d¢ (78)
/ ! \/(b o 4

K, =2(V ¢/—1_V (b/—l'—a) (79)
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9" =g.0) (80)
81 = .%(d)l—l+¢f) (SI)
s=1.2.

A modified version of the so-called Chebyshev mesh is used, giving
o .
¢,=n—(n—1)cos’\,. J=0.1,2.... V. (82)

[t has the feature of allocating more mesh points near the crack tip ¢ = %, which is obviously
desirabie in view of the expected stress singularity there.

The functions K, (.. ¢) in (78) become unbounded at ¢ = 0,, thus conventional quad-
rature formulae will not yield sufficient accuracy. To circumvent such difficulty, we write
the kernels (53) and (54) in the following manner

K.(0.4) = K0, )+ KV(0. d) (83)
o}

s=12

where

Ko @) = log 0
0 . = 1oL

7‘, — —
0— 4 +log|2n — — | (84)

+¢
h

sin (04 ¢)/2 sin (0 —¢),2

-— ¥

K0, ¢) = log

QAn—0—=p) O+ )2 (0—$)/2
4,(1-G)y ¢ o l .
+ +s ,.; |+ G—(1=C)V , i n0sin ng  (85)
KP(0,¢) = —logl0+¢| —log|t— | —log |2n—0—¢| (86)
sin (0+ ¢)/2 sin (0 —¢)/2

K0, ¢) = —log

Qn—0-9)(0+¢)/2 (0-¢)/2

4;(1-G) & yn |
/(I+i ) y I+G_(I_G)V,r,'—lcosn0cosnd>. (87)
- nwi

[t follows that

(88)

_ RO, U
Kl(,\l = 0 )»(‘ ,(/7) d(,’)+J- 1 ( ' (é) dd)
?

o Jb—x /-

1 \/(f)—l
s=12, j=12..., N

The first integrals in (88) can be integrated exactly and since KY(0, @) is well behaved,
through a change of variable u = \/qﬁ—z. the second integrals may be calculated by any
numerical method, for instance, Simpson’s rule is found to be quite effective.

For the purpose of illustration, in the subsequent numerical calculations we consider
a simple situation when the interface crack length is uniformly distributed between 0 and
2ra with the distribution function given by
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3
25h /G =20.0
10.0
2r 5.0
Gg,Gm 1.5
1+
V;=0.55
05
0 i 1 3, i
0 0.2 0.4 06 0.8 1
N
Fig. 4. Effective longitudinal shear modulus vs [raction of fibers containing interface cracks.
Vi =0.55.
I
f(:r)=;r, O<x<n. (89

Calculations of the effective shear modulus were carried out for various interface crack
number fractions, ratios of fiber-matrix moduli and fiber volume contents. The bisection
method was found to be quite effective in solving eqn (67) for G,.. The results are presented
in Figs 4-8.

Figure 4 shows the variation of G, with interface crack number fraction n, for various
ratios G;/G,,. The results indicate that the rate of reduction in longitudinal shear stiffness
increases with the increase of Gy/G,,. Figures 5-6 show the variation of G, with interface
crack number fraction for various values of V. Note that for a given n,, the absolute
number of fibers that contain interfuce cracks increases with the increase of fiber volume
fraction. Figures 7-8 show the variation of G, with fiber volume fraction for various n,.
The results presented in Figs 4-8 indicate that in the case when all fibers contain interface
cracks, e, n, = 1, the composite loses all the longitudinal stiffness reinforcement provided
by the fibers. In interpreting these results, one should notice that in general, the number of
interfacial cracks in the composite may well depend on the level of applied load as well as
fiber volume content, and the crack length is likely to obey more complicated distribution

4.2
!
ast
V,=0.7
28t r=0.75
Ge/Gm 21} 0.55
0.35
14 F
07 G/Gm =10.0
0 L L J L
0 0.2 0.4 0.6 0.8 1
Ne

Fig. 5. Effective longitudinal shear modulus vs fraction of fibers containing interface cracks,
GG = 10.0.
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Fig. 6. Effective longitudinal shear modulus vs fraction of fibers containing interface cracks.
GG, = 20.0.

5

i Gy/Gm =10.0

3 perfact bonding

Ge/Gm

2 -

1 -

O 1 1 1 1
0 0.2 0.4 0.6 0.8

Vi

Fig. 7. Effective longitudinal shear modulus vs tiber volume fraction, G,/G,, = 10.0.

5+ G(/Gm =200 S

Fig. 8. Effective longitudinal shear modulus vs fiber volume fraction, Gi/G,, = 20.0.
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functions (e.g.. Gaussian distribution) than the simple uniform distribution function used
here for numernical examples.
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